Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Immunol ; 210(6): 774-785, 2023 03 15.
Article in English | MEDLINE | ID: covidwho-2225920

ABSTRACT

Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1ß and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.


Subject(s)
Coronavirus Infections , Interferon Type I , Murine hepatitis virus , Pneumonia , Animals , Mice , Immunity, Innate , Antiviral Agents/pharmacology , Virus Replication
2.
RMD Open ; 8(2)2022 10.
Article in English | MEDLINE | ID: covidwho-2088878

ABSTRACT

OBJECTIVES: To correlate immune responses following a two-dose regimen of mRNA anti-SARS-CoV-2 vaccines in patients with rheumatoid arthritis (RA) to the development of a potent neutralising antiviral activity. METHODS: The RECOVER study was a prospective, monocentric study including patients with RA and healthy controls (HCs). Assessments were performed before, and 3, 6, 12 and 24 weeks, after the first vaccine dose, respectively, and included IgG, IgA and IgM responses (against receptor binding domain, S1, S2, N), IFN-γ ELISpots as well as neutralisation assays. RESULTS: In patients with RA, IgG responses developed slower with lower peak titres compared with HC. Potent neutralising activity assessed by a SARS-CoV-2 pseudovirus neutralisation assay after 12 weeks was observed in all 21 HCs, and in 60.3% of 73 patients with RA. A significant correlation between peak anti-S IgG levels 2 weeks after the second vaccine dose and potent neutralising activity against SARS-CoV-2 was observed at weeks 12 and 24. The analysis of IgG, IgA and IgM isotype responses to different viral proteins demonstrated a delay in IgG but not in IgA and IgM responses. T cell responses were comparable in HC and patients with RA but declined earlier in patients with RA. CONCLUSION: In patients with RA, vaccine-induced IgG antibody levels were diminished, while IgA and IgM responses persisted, indicating a delayed isotype switch. Anti-S IgG levels 2 weeks after the second vaccine dose correlate with the development of a potent neutralising activity after 12 and 24 weeks and may allow to identify patients who might benefit from additional vaccine doses or prophylactic regimen.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Humans , SARS-CoV-2 , Immunoglobulin A , Prospective Studies , COVID-19/prevention & control , Immunoglobulin G , Immunoglobulin M , Antiviral Agents , Viral Proteins , RNA, Messenger
3.
Eur J Clin Invest ; 52(2): e13713, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1541727

ABSTRACT

BACKGROUND: COVID-19 and some anti-SARS-CoV-2 vaccines trigger a humoral autoimmune response against a broad range of endogenous components, which may affect recipients' prognosis in predisposed individuals. Autoantibodies directed against apolipoprotein A-1 (AAA1 IgG) the major protein fraction of High Density Lipoprotein have been shown to be raised in COVID-19 and in rheumatoid arthritis (RA) patients and other populations where they have been associated with poorer outcomes. We wanted to assess the impact of anti-SARS-CoV-2 mRNA-based vaccination on AAA1 autoimmune biomarkers in RA patients. METHODS: 20 healthy controls and 77 RA mRNA-based vaccinated patients were collected at baseline, 3 weeks after the first vaccination, 2 and 8 weeks after the second vaccination. AAA1 and SARS-CoV-2 serologies were measured by immunoassays. Systemic and local symptoms occurring during the vaccination protocol were recorded. RESULTS: mRNA-based vaccination induced a significant increase in median AAA1 IgG levels in both healthy controls and RA patients overtime. However, in both populations, these medians trend did not translate into significant increase in AAA1 IgG seropositivity rates despite evolving from 5 to 10% in healthy controls, and from 9 to 12.9% in RA patients. No associations were retrieved between AAA1 IgG and symptoms of any kind during the vaccination protocol. CONCLUSIONS: mRNA-based vaccination seems to induce a light AAA1 IgG response in immunocompetent individuals within 2 months after the last injection. Although we did not observe any warning signs, the formal demonstration of the harmlessness of such biological warrants further studies.


Subject(s)
Apolipoprotein A-I/immunology , Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Immunity, Humoral/immunology , mRNA Vaccines/adverse effects , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Aged , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Female , Humans , Immunocompetence , Immunoglobulin G , Male , Middle Aged , SARS-CoV-2 , mRNA Vaccines/therapeutic use
6.
Eur J Immunol ; 51(5): 1062-1070, 2021 05.
Article in English | MEDLINE | ID: covidwho-1121340

ABSTRACT

Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS-CoV, MERS-CoV, and SARS-CoV-2 highlights the potential for CoVs to cause severe respiratory and systemic disease. The devastating global health burden caused by SARS-CoV-2 has spawned countless studies seeking clinical correlates of disease severity and host susceptibility factors, revealing a complex network of antiviral immune circuits. The mouse hepatitis virus (MHV) is, like SARS-CoV-2, a beta-CoV and is endemic in wild mice. Laboratory MHV strains have been extensively studied to reveal coronavirus virulence factors and elucidate host mechanisms of antiviral immunity. These are reviewed here with the aim to identify translational insights for SARS-CoV-2 learned from murine CoVs.


Subject(s)
Adaptive Immunity/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Murine hepatitis virus/immunology , Murine hepatitis virus/pathogenicity , Animals , Disease Models, Animal , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism/physiology
SELECTION OF CITATIONS
SEARCH DETAIL